The Re-parametrization of the DAS Model Based on 2016-2021 Data of the National Forestry Database: New Results on Cutting Age Distributions

Authors

DOI:

https://doi.org/10.37045/aslh-2023-0005

Keywords:

cutting age, harvesting ratio, forest model, climate change, carbon storage, vágáskor, véghasználati hozami terület arány, véghasználati mátrix, erdőállomány prognózis, klímaváltozás, szénmegkötés

Abstract

This paper presents the DAS forest model (Distributions Applied on Stands model), a forest stand-based model suitable for projecting standing volume, increment, harvest, and carbon sequestration on the stand, regional, or country levels. The forest subcompartment is the modelling unit of the DAS model, which uses National Forestry Database (NFD) data, including geospatial data. The model is suitable for further processing spatially explicit input parameters such as climate change forecasts. The model output is also georeferenced and can be further processed using GIS software. The model handles the data of approximately 600,000 forest subcompartments. Data on tree species, origin, age, growing stock, increment etc. of each subcompartment are stored in “tree-species rows”, which are the sub-units of the model. The DAS model simultaneously processes the data of 1.2 million tree species rows and describes their development in time. It uses parameters based on the actual processes of the reference period. It also uses empiric cutting age distributions and a regeneration matrix derived from historic NFD data. The ForestLab project (TKP2021-NKTA-43) is currently engaged in the re-parametrization of the model based on 2016–2021 data. This study discusses the functions of the harvesting ratio distribution in the modelling process and in determining the subcompartments selected for harvest. The paper presents the latest results regarding the 2016–2021 cutting age distributions and the preparation of the new set of species-specific and yield class-specific average harvesting ratio distributions.

References

BARCZA, Z. – HASZPRA, L. – SOMOGYI, Z. – HIDY, D. – LOVAS, K. – CHURKINA, G. – HORVÁTH L. (2009): Estimation of the biospheric carbon dioxide balance of Hungary using the BIOME-BGC model. Időjárás 113 (3): 203-209.

BÖTTCHER, H. – KURZ, W.A. – FREIBAUER, A. (2008b): Accounting of forest carbon sinks and sources under future climate protocol – factoring out past disturbance and management effects on age-class structure, Environmental Science & Policy 11 (8): 669–686. https://doi.org/10.1016/j.envsci.2008.08.005.

BÖTTCHER, H. – FREIBAUER, A. – OBERSTEINER, M. – SCHULZE, E.D. (2008a): Uncertainty analysis of climate change mitigation options in the forestry sector using a generic carbon budget model. For. Ecological Modelling 213 (1): 45–62. https://doi.org/10.1016/j.ecolmodel.2007.11.007.

ELTE (2023): Website of the Biome-BGCMuSo model. https://nimbus.elte.hu/bbgc/

GÁL, J. (1980): Fatermési függvények alkalmazása az üzemtervek számítógépes adatfeldolgozásában [Application of tree yield functions in the computerized data processing of forest management plans]; thesis; Sopron. (in Hungarian)

GÁL, J. (1988): Fatermési függvények bevezetése az üzemtervek számítógépes adatfeldolgozásába [Introduction of tree yield functions in the computerized data processing of forest management plans]; project report; Sopron. (in Hungarian)

HUNDESHAGEN, J.C. (1848): Die Forstabschätzung auf neuen wissenschaftlichen Grundlagen. H. Laupp’schen.

IIASA (2023): Global Forest Model (G4M). https://iiasa.ac.at/models-tools-data/g4m

KIRÁLY, L. – MÉSZÁROS K. (1995): Konvergens prognózisok szerepe az erdőgazdasági stratégiák tervezésében [Role of Convergent Prognosen in Planning Forestry]; Erdészeti és Faipari Tudományos Közlemények 1994-1995. 137.

KIRÁLY, L. – SZENTKÚTI, F. – GÁL, J. – MAGAS, L. – MÉSZÁROS, K. – SZÉLESY, M. – FACSKÓ, F. – RÁCS, A. – KOLLER, E. – SZABÓ, P. – FEJES, L. – STEINER, T. – VESZTERGOM, V. (1992): Zárójelentés az 1875. nyt. sz. OTKA kutatásról (1986-1991). Az erdőállománnyal való gazdálkodás optimális szabályozási stratégiájának megalapozása. [Establishing the optimal regulatory strategy for forest management. Projet report.] Erdészeti és Faipari Egyetem, Erdőrendezéstani Tanszék, Sopron.

KOTTEK, P. (2017): National Forest Projection – 2050 in Bidló A., Facskó F. (eds.) University of Sopron, Faculty of Forestry, VI. Faculty Scientific Conference Book of Abstracts. Publishing Office of the University of Sopron, 59., Sopron. (In Hungarian).

KOTTEK, P. (2022): Megváltoztatta-e a vágáskorokat az Evt. 2017. szeptemberi változása? Eredmények az erdőállomány-prognózis előkészítésének munkáiból. [Did the 2017 change of the Forest Act change the cutting ages? Results from the preparation of a forest projection. Presentation.] OEE Szakosztályülés Budapest.

KOTTEK, P. – KIRÁLY, É. – MERTL, T – BOROVICS A. (2023): Trends of Forest Harvesting Ages by Ownership and Function and the Effects of the Recent Changes of the Forest Law in Hungary. Forests 14 (4): 679. https://doi.org/10.3390/f14040679.

KURZ, W.A. – DYMOND, C.C. – WHITE, T.M. – STINSON, G. – SHAW, C.H. – RAMPLEY, G.J. – SMYTH, C. – SIMPSON, B.N. – NEILSON, E.T. – TROFYMOW, J.A. – METSARANTA, J. – APPS, M.J. (2009): CBM-CFS3: a model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecological Modelling 220 (4): 480–504. https://doi.org/10.1016/j.ecolmodel.2008.10.018.

LANDSBERG, J.J. – WARING, R.H., (1997): A generalized model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management 95 (3): 209–228. https://doi.org/10.1016/S0378-1127(97)00026-1.

LESLIE, A. J. (1966): A Review of the Concept of the Normal Forest, Australian Forestry 30 (2): 139-147, https://doi.org/10.1080/00049158.1966.10675407.

MASERA, O.R. – GARZA-CALIGARIS, J.F. – KANNINEN, M. – KARJALAINEN, T. – LISKI, J. – NABUURS, G.J. – PUSSINEN, A. – DE JONG, B.H.J. – MOHRENF, G.M.J. (2003): Modelling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2FIX V.2 approach. Ecological Modelling 164 (2–3): 177–199. https://doi.org/10.1016/S0304-3800(02)00419-2.

MCGUIRE, A.D. – WIRTH, C. – APPS, M. – BERINGER, J. – CLEIN, J. – EPSTEIN, H. – KICKLIGHTER, D.W. – BHATTI, J. – CHAPIN, F.S. – DE GROOT, B. – EFREMOV, D. – EUGSTER, W. – FUKUDA, M. – GOWER, T. – HINZMAN, L. – HUNTLEY, B. – JIA, G.J. – KASISCHKE, E. – MELILLO, J. – ROMANOVSKY, V. – SHVIDENKO, A. – VAGANOV, E. – WALKER, D. (2002): Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes. Journal of Vegetation Science 13 (3): 301–314. https://doi.org/10.1111/j.1654-1103.2002.tb02055.x.

METHERALL, A.K. – HARDING, L.A. – COLE, C.V. – PARTON, W.J. (1993): CENTURY Soil Organic Matter Model Environment Technical Documentation, Agroecosystem Version 4.0, Great Plains System Research Unit, Tech. Rep. No. 4. USDA-ARS, Ft. Collins.

NABUURS, G.J. – SCHELHAAS, M.J. – PUSSINEN, A. (2000): Validation of the European Forest Information Scenario Model (EFISCEN) and a projection of Finnish forests. Silva Fennica 34 (2): 167–179. https://doi.org/10.14214/sf.638.

PILLI, R. – GRASSI, G. – KURZ, W.A. – FIORESE, G. – CESCATTI, A. (2017): The European forest sector: past and future carbon budget and fluxes under different management scenarios, Biogeosciences Discussions 14: 2387-2405. https://doi.org/10.5194/bg-2016-525.

PILLI, R. – GRASSI, G. – KURZ, W.A. – MORIS, JV. – ABAD VIÑAS, R. (2016): Modelling forest carbon stock changes as affected by harvest and natural disturbances. II. EU-level analysis, Carbon Balance Management 11:20. https://doi.org/10.1186/s13021-016-0047-8.

PILLI, R. – GRASSI, G. – KURZ, W.A. – SMYTH, C.E. – BLUJDEA, V. (2013): Application of the CBM-CFS model to estimate Italy’s forest carbon budget, 1995 to 2020, Ecological Modelling 266: 144-171. https://doi.org/10.1016/j.ecolmodel.2013.07.007.

RUNNING, S.W. – GOWER, S.T. (1991): FOREST-BGC, A general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets. Tree Physiology 9 (1–2): 147–160. https://doi.org/10.1093/treephys/9.1-2.147.

SATHAYE, J. – MAKUNDI, W. – ANDRASKO, K. (1995): A comprehensive mitigation assessment process (COMAP) for the evaluation of forestry mitigation options, Biomass and Bioenergy 8 (5): 345–356, ISSN 0961-9534, https://doi.org/10.1016/0961-9534(95)00027-5.

SOMOGYI, Z. – TOBISCH, T. – SZEPESI, A. (2019): National Forest Accounting Plan, Hungary, Budapest. Gödöllő, Magyarország: Nemzeti Agrárkutatási és Innovációs Központ (NAIK), 118. URL: http://cdr.eionet.europa.eu/hu/eu/mmr/lulucf/envxgc1ma.

SOMOGYI, Z. (1997): Mitigation Analysis in the Forestry Sector. In: Hungarian Country Studies Team: Hungarian Climate Change Country Study. Systemexpert Consulting Ltd., Budapest, 85-112.

SOMOGYI, Z. (2019): CASMOFOR version 6.1. University of Sopron, Forest Research Institute, Budapest. Website: http://www.scientia.hu/casmofor

SOMOGYI, Z. (2020): Az erdők szénlekötésének új referenciaszintje. [The new Forest Reference Level of Hungary] Erdészeti Lapok CLV: 38-41.

SUZUKI, T. (2003): Gentan Probability and the Concept of the Normal Wood, in the Wide Sense; FBMIS 1: 65–74. ISSN 1740-5955.

TIAN, H. – MELILLO, J.M. – KICKLIGHTER, D.W. – MCGUIRE, A.D. – HELFRICH, J. (1999): The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States. Tellus Ser. B 51 (2): 414–452. https://doi.org/10.3402/tellusb.v51i2.16318.

UNFCCC (2011): Report of the technical assessment of the forest management reference level submission of Hungary submitted in 2011. https://unfccc.int/sites/default/files/resource/docs/2011/tar/hun01.pdf.

YOSHIMOTO, A. (1996A): A new stochastic model for harvesting behaviour with application to nonstationary forest growth and supply. Canadian Journal of Forest Research 26 (11): 1967–1972. https://doi.org/10.1139/x26-222.

YOSHIMOTO, A. (1996B): Economic analysis of harvesting behaviour using the modified Gentan probability theory. Journal of Forest Research 1 (2): 67–72. https://doi.org/10.1007/BF02348306.

Péter KOTTEK – Éva KIRÁLY – Tamás MERTL – Attila BOROVICS: The Re-parametrization of the DAS Model Based on 2016-2021 Data of the National Forestry Database: New Results on Cutting Age Distributions

Published

2023-11-30

How to Cite

Kottek, P., Király, Éva, Mertl, T., & Borovics, A. (2023). The Re-parametrization of the DAS Model Based on 2016-2021 Data of the National Forestry Database: New Results on Cutting Age Distributions. Acta Silvatica & Lignaria Hungarica, 19(2), 61–74. https://doi.org/10.37045/aslh-2023-0005

Most read articles by the same author(s)