Radial and Vertical Distribution of Dissoluble Total Carbohydrate Content in the Beech (Fagus sylvatica L.): Relationships with Red Heartwood Formation
DOI:
https://doi.org/10.37045/aslh-2024-0006Keywords:
Beech, Red heartwood formation, Distribution of dissoluble carbohydratesAbstract
Red heartwood forms in most old beech stands, which reduces the commercial value of the wood considerably. Many of the chemical and biochemical processes involved in red heartwood formation are known, but research has been limited to a single level of the stem (usually at breast height). The present study investigated the radial and vertical distribution of dissoluble carbohydrates at different height levels within a red heartwood (17 levels) and a non-red heartwood (12 levels) beech stem. The radial changes of the concentrations differ notably in beech with or without red heartwood. An increase in the transition zone is not a mandatory condition for red heartwood formation, but a decrease in concentration always occurs after the transition zone. Intense sugar metabolism at the color boundary contributes to the surplus energy required in red heartwood formation and the in situ synthesis of polyphenolic compounds.
References
Albert, L. Németh, Zs.I., Halász, G., Koloszár, J., Varga, Sz., Takács, L., 1998a. A szabad és kötött savtartalom sugárirányú változása a vörös gesztű bükk (Fagus sylvatica L.) faanyagában. [Radial variation of free and bounded acid content in the red-heartwood beech (Fagus sylvatica L.) wood.]. Faipar 46 (2), 23–24. (in Hungarian)
Albert, L., Németh, Zs.I., Halász, G., Bidló, A., Koloszár, J., Varga, Sz., Takács, L., 1998b. Eltérések a vörös gesztű bükk (Fagus sylvatica L.) faanyagának kémiai paramétereiben. [Differences in the chemical parameters of the red-heartwooded beech (Fagus sylvatica L.) wood.]. Faipar 46 (1), 36–37. (in Hungarian)
Albert, L., Németh, Zs.I., Halász, G., Koloszár, J., Varga, Sz., Takács, L., 1999. Radial variation of pH and buffer capacity in the red-heartwooded beech (Fagus sylvatica L.) wood. Holz als Roh- und Werkstoff 57, 75–76. https://doi.org/10.1007/PL00002626
Albert, L., Németh, Zs.I., Hofmann, T., Koloszár, J., Varga, Sz., Csepregi, I., 2000. Variation of the Chemical Parameters, Endogenous Formaldehyde Content and Catalase Activity in the Red-Heartwooded Beech (Fagus Sylvatica L.) Wood”, 5th International, Jubilee Conference On Role Of Formaldehyde In Biological Systems, Sopron, Hungary.
Albert, L., Hofmann, T., Visi-Rajczi, E., Rétfalvi, T., Németh, Zs.I., 2002. Relationships among total phenol and soluble carbohydrate contents and activities of peroxidase, and polyphenoloxidase in red-heartwooded beech (Fagus sylvatica L.). 7th European workshop on lignocellulosics and pulp - Towards molecular-level understanding of wood, pulp and paper, Turku, Finnland, pp. 253–256.
Albert, L., Hofmann, T., Németh, Zs.I., Rétfalvi, T., Koloszár, J., Varga, Sz., Csepregi, I., 2003. Radial variation of total phenol content in beech (Fagus sylvatica L.) wood with and without red heartwood. Holz als Roh- und Werkstoff 61, 227–230. https://doi.org/10.1007/s00107-003-0381-x
Albert, L., Hofmann, T., Rétfalvi, T., Németh, Zs.I., Koloszár, J., Varga, Sz., Csepregi, I., 2005. A fenoloidok, a polifenol-oxidáz és a peroxidáz szerepe a bükkálgeszt kialakulásában. [The role of phenolic compounds, peroxidase and polyphenol-oxidase enzymes in the formation of red heartwood in beech – Edition of the Hungarian Academy of Sciences]. Erdő és fagazdaságunk időszerű kérdései - Az MTA Erdészeti Bizottsága Kiadványa, Budapest, pp. 161–176.
Dehon, L., Macheix, J.J., Durand, M., 2002. Involvement of peroxidases in the formation of the brown coloration of heartwood in Juglans nigra. Journal of Experimental Botany 367, 303–311. https://doi.org/10.1093/jexbot/53.367.303
Dietrichs, H.H., 1964a. Studies of the chemistry and physiology of the transformation of sapwood into heartwood in Fagus sylvatica L. A contribution to the problem of heartwood formation. Mitteilungen der Bundesforschungsanstalt für Forst- und Holzwirtschaft 58: 141 p.
Dietrichs, H.H., 1964b. The behaviour of carbohydrates during heartwood formation. Holzforschung 18 (1/2), 14–24.
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F., 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28, 350–356.
Fengel, D., 1987. Chemisch-analytische Untersuchungen am Holz erkrankter Baume. Gelöste Substanzen im frischen Splintholz. Holz als Roh- und Werkstoff 45, 501–507. https://doi.org/10.1007/BF02611456
Fischer, C., Höll, W., 1992. Food reserves of Scots pine (L.) II. Seasonal changes in the carbohydrate and fat reserves in pine wood. Trees 6, 147–155. https://doi.org/10.1007/BF00202430
Frýdl, J., Novotný, P., Fennessy, J., von Wühlisch, G., 2011. Genetic resources of beech in Europe – current state, COST Action E 52: 10–11.
Halmer, P., Bewley, J.D., 1982. Control by external and internal factors over the mobilization of reserve carbohydrates in higher plants. In: Loewus, F. A. – Tanner, W. (eds) Encyclopedia of plant physiology, new series. Plant carbohydrates, I. Intracellular carbohydrates Vol 13 A. Springer, Berlin, Heidelberg, New York, pp. 748–793.
Hartmann, H., Trumbore, S., 2016. Understanding the roles of nonstructural carbohydrates in forest trees – from what we can measure to what we want to know. New Phytologist 211, 386–403. https://doi.org/10.1111/nph.13955
Hillis, W.E., 1968. Chemical aspects of heartwood formation. Wood Science and Technology 2, 241–259. https://doi.org/10.1007/BF00350271
Hillis, W.E., 1987. Heartwood and tree exudates. Springer, Berlin, München.
Hillis, W.E., Humphreys, FR., Bamber, R.K., Carle. A., 1962. Factors influencing the formation of phloem and heartwood polyphenols. Part II. The avaliability of stored and translocated carbohydrates. Holzforschung 16, 114–121.
Hofmann, T., Albert, L., Retfalvi, T., 2004. Quantitative TLC analysis of (+)-catechin and (-) -epicatechin from Fagus sylvatica L. with and without red heartwood. Journal of Planar Chromatography 17, 350–354.
Hofmann, T., Albert, L., Retfalvi, T., Visi-Rajczi, E., Brolly, G., 2008. TLC analysis of the in vitro reaction of beech (Fagus sylvatica L.) wood enzyme extract with catechins. Journal of Planar Chromatography 21, 83–88. https://doi.org/10.1556/jpc.21.2008.2.2
Hofmann, T., Guran, R., Zitka, O., Visi-Rajczi, E., Albert, L., 2022. Liquid chromatographic/mass spectrometric study on the role of beech (Fagus sylvatica L.) wood polyphenols in red heartwood formation. Forests 13 (1), 10. https://doi.org/10.3390/f13010010
Höll, W., 1972. Stärke und Stärkeenzyme im Holz von Robinia pseudoacacia L.. Holzforschung 26, 41.
Höll, W., 1981. Eine Dünnschichtchromatographische Darstellung des Jahresgangs löslicher Zucker im Stammholz von drei Angiospermen und eine Gymnosperme. Holzforschung 35, 173–175. https://doi.org/10.1515/hfsg.1981.35.4.173
Höll, W., 1985. Seasonal fluctuation of reserve materials in the stemwood of spruce (Picea abies (L.) Karst.). Journal of Plant Physiology 117, 355–362. https://doi.org/10.1016/S0176-1617(85)80071-7
Höll, W., 1997. Storage and mobilization of carbohydrates and lipids, In: Rennenberg, H., Eschrich, W., Ziegler, H. (eds) Trees- Contributions to modern tree physiology, Backhuys Publishers, Leiden, 197.
Jeremias, K., 1969. Zur winterlichen Zuckeranhaufung in vegetativen Pflanzenteilen. Berichte der Deutschen Botanischen Gesellschaft 82, 87–97.
Kandler, O., Hopf, H., 1982. Oligosaccharides based on sucrose (sucrosyl oligosaccharides). In: Loewus F. A., Tanner, W. (eds) Encyclopedia of plant physiology, new series. Plant carbohydrates I. Intracellular carbohydrates Vol 13 A. Springer, Berlin, Heidelberg, New York, pp 348–383.
Koch, G., Bauch, J., Puls, J., Welling, J., 2001. Ursachen und wirtschaftliche Bedeutung von Holzverfärbungen - Interdisziplinäre Forschung am Beispiel der Rotbuche (Fagus sylvatica L.). Forschungsreport Verbraucherschutz - Ernährung - Landwirtschaft 2/2001 Heft 2, pp. 30–33.
Koch, G., Puls, J., Bauch, J., 2003. Topochemical characterisation of phenolic extractives in discoloured beechwood (Fagus sylvatica L.). Holzforschung 57, 339–345. https://doi.org/10.1515/HF.2003.051
Liu, W., Su, J., Li, S., Lang, X., Huang, X., 2018. Non-structural carbohydrates regulated by season and species in the subtropical monsoon broad-leaved evergreen forest of Yunnan Province, China. Scientific Reports 8: 1083. https://doi.org/10.1038/s41598-018-19271-8 Magel, E., 2000. Biochemistry and physiology of heart-wood formation. In: Savidge, R., Barnett, J. and Napier, R., Eds., Molecular and Cell Biology of Wood Formation. BIOS Scientific Publishers, Oxford, pp.363–376.
Magel, E.A., Abdel-Latif, A., Hampp, R., 2001. Non-structural carbohydrates and catalytic activities of sucrose metabolizing enzymes of two Juglans species and their role in heartwood formation. Holzforschung 55, 135–145. https://doi.org/10.1515/HF.2001.022
Magel, E.A., Hillinger, C., Höll, W., Ziegler, H., 1997. Biochemistry and physiology of heartwood formation: Role of reserve substances. In: Rennenberg, H., Eschrich W., Ziegler, H. (eds) Trees–Contribution to modern tree physiology SFB Academic Publisher, The Hague, pp. 477–506.
Magel, E.A., Höll, W., 1993. Storage carbohydrates and adenine Nucleotides in stems of Fagus sylvatica in relation to discoloured wood. Holzforschung 47 (1), 19–25. https://doi.org/10.1515/hfsg.1993.47.1.19
Magel, E.A., Jay-Allemand, C., Ziegler, H., 1994. Formation of heartwood substances in the stemwood of Robinia pseudoacacia L. II: Distribution of nonstructural carbohydrates and wood extractives across the stem. Trees 8, 165–171. https://doi.org/10.1007/BF00196843
Molnár, S., Németh, R., Fehér, S., Tolvaj, L., Papp, Gy., Varga, F., Apostol, T., 2001. Technical and technological properties of hungarian beech wood consider the red heart. Wood Research, Drevársky Vyskum 46, 21–30.
Popp, M., Lied, W., Bierbaum, U., Gross, M., Grosse-Schulte, T., Hams, S., Oldenette, J., Schüler, S., Wies, J., 1997. Cyclitols-stable osmotica in trees. In: Rennenberg, H., Eschrich, W., Ziegler, H.,eds) Trees-Contributions to modern tree physiology, Backhuys Publishers, Leiden, 257.
Pöhler, E., Klingner, R., Künniger, T., 2006. Beech (Fagus sylvatica L.) - technological properties, adhesion behaviour and colour stability with and without coatings of the red heartwood. Annals of Forest Science 63, 129–137. https://doi.org/10.1051/forest:2005105
Sáenz-Romero, C., Kremer, A., Nagy, L., Újvári-Jármay, É., Ducousso, A., Kóczán-Horváth, A., Hansen, J.K., Mátyás, Cs., 2019. Common garden comparisons confirm inherited differences in sensitivity to climate change between forest tree species. PeerJ 7, e6213. https://doi.org/10.7717/peerj.6213.
Saranpää, P., Höll, W., 1989. Soluble carbohydrates of Pinus sylvestris L. sapwood and heartwood. Trees-Structure and Function 3, 133–143.
Sauter, J.J., Kloth, S., 1987. Changes in carbohydrates and ultrastructure in xylem ray cells of Populus in response to chilling. Protoplasma 137, 45–55. https://doi.org/10.1007/BF01281175
Sauter, J.J., Marquardt, H., 1989. Untersuchungen zur Physiologie der Pappelholzstrahlen. Holzforschung 43, 421.
Sauter, J.J., Vancleve, B., 1993. Storage, mobilization and interrelations of starch, sugars, protein and fat in the ray storage tissue of poplar trees. Journal of Plant Physiology 141, 248. https://doi.org/10.1007/BF00202674
Sauter, J.J., Wellenkamp, S., 1998. Seasonal changes in content of starch, protein and sugars in the twig wood of Salix caprea L.. Holzforschung 52, 255.
Todorović, N., Popović, Z., Milić, G., Popadić, R., 2012. Estimation of heat-treated beechwood properties by colour change. BioRes 7(1), 799–815. https://doi.org/10.15376/biores.7.1.799-815
Vek, V., Oven, P., Poljanšek, I., 2013. Content of total phenols in red heart and wound-associated wood in beech (Fagus sylvatica L.). Drvna Industrija 6(1), 25–32. https://doi.org/10.5552/drind.2013.1224
Vek, V., Oven, P., Ters, T., Poljansek, I., Hinterstoisser, B., 2014. Extractives of mechanically wounded wood and knots in beech. Holzforschung 68(5), 529–539. https://doi.org/10.1515/hf-2013-0003
Visiné Rajczi, E.,2008. Bükk (Fagus sylvatica L.) extrakt anyagok képződése, akkumulációja és megoszlása. [The production, accumulation and distribution of beech (Fagus sylvatica L.) extractives.]. Doktori értekezés. Nyugat-magyarországi Egyetem, Erdőmérnöki Kar, Roth Gyula Erdészeti- és Vadgazdálkodási Tudományok Doktori Iskola, Erdészeti és vadgazdálkodási tudományág, 95 p. Sopron. (in Hungarian)
Visi-Rajczi, E., Albert, L., Hofmann, T., Sárdi, É., Koloszár, J., Varga, Sz., Csepregi, I., 2003. Storage and accumulation of nonstructural carbohydrates in stems of Fagus sylvatica L. in relation to discoloured wood, International Conference on Chemical Technology of Wood, Pulp and Paper, Bratislava, Slovak Republic, pp. 330–334.
Visiné Rajczi, E., Albert, L., Koloszár, J., Varga, Sz., Csepregi, I., Sárdi, É., 2002. Az álgesztes bükk (Fagus sylvatica L.) kioldható szénhidráttartalmának vizsgálata. [Investigation of the soluble carbohydrate contents in red- heartwooded beech (Fagus sylvatica L.).]. A Kémiai Intézet tudományos ülésszaka, Sopron, pp. 97–101. (in Hungarian with English abstract)
Visi-Rajczi, E., Hofmann, T., Albert, L., Mátyás, Cs., 2021. Tracing the acclimation of European beech (Fagus sylvatica L.) populations to climatic stress by analyzing the antioxidant system. iForest 14, 95–103. https://doi.org/10.3832/ifor3542-013
Ziegler, H., 1968. Biologische Aspekte der Kernholzbildung. Holz als Roh- und Werkstoff 26, 61–68. https://doi.org/10.1007/BF02615811

Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.