Tree Health Survey Results of Juvenile Black Locust Clones
DOI:
https://doi.org/10.37045/aslh-2024-0007Keywords:
Plant protection, Black locust breeding, Stress tolerance, NDVIAbstract
The black locust (Robinia pseudoacacia L.) is a significant tree species in many European countries, especially Hungary. The Hungarian Forest Research Institute initiated a project in the 1960s to improve Robinia stem quality and yield. Five newly bred clones (Laposi, Napkori, Hajdúsági, Farkasszigeti, Püspökladányi) are currently undergoing tests in three trials (Debrecen, Napkor, and Nyírbogdány). Studying the health status of these clones is vital to the cultivar certification process. In September 2022 (Napkor) and August 2023 (Nyírbogdány, Debrecen), we investigated 30 trees per clone by estimating average foliage loss per individual and observing the extent and causes of damage to the crown (canopy), branches, and trunk in each experimental plot. At the same time as the tree health survey, NDVI measurements were also performed in Debrecen using Trimble Greenseeker handheld sensor. Our results indicate that the clones possess good drought tolerance; however, the NDVI results revealed significant differences between the clones: Laposi and Farkasszigeti have the highest NDVI values (0.76 and 0.77), and Püspökladány has the lowest (0.74). Napkori is the most susceptible to fungal disease, exhibiting significant incidences of bark necrosis caused by Phomopsis petiolorum. The rate of insect damage was negligible, even with low levels of damage by leaf miners, which are very common in black locust plantations.
References
Ábri, T., Keserű, Z., Borovics, A., Rédei, K., Csajbók, J., 2022. Comparison of juvenile, drought tolerant black locust (Robinia pseudoacacia L.) clones with regard to plant physiology and growth characteristics in Eastern Hungary: early evaluation. Forests 13 (2), 292. https://doi.org/10.3390/f13020292
Ábri, T., Borovics, A., Csajbók, J., Kovács, E., Koltay, A., Keserű, Z., Rédei, K., 2023a. Differences in the Growth and the Ecophysiology of Newly Bred, Drought-Tolerant Black Locust Clones. Forests 14 (9), 1802. https://doi.org/10.3390/f14091802
Ábri, T., Cseke, K., Keserü, Z., Porcsin, A., Szabó, F.M., Rédei, K., 2023b. Breeding and improvement of black locust (Robinia pseudoacacia L.) with a special focus on Hungary: a review. iForest-Biogeosciences and Forestry 16 (5), 290. https://doi.org/10.3832/ifor4254-016
Bahe, M.M., Murphy, R.L., Russell, M.B., Knight, J.F., Johnson, G.R., 2021. Suitability of a single imager multispectral sensor for tree health analysis. Urban Forestry & Urban Greening 63, 127187. https://doi.org/10.1016/j.ufug.2021.127187
Bakó, Z., Seprős, I., 1987. Phyllonorycter fajok almaültetvényekben. [The occurrence of Phyllonorycter species in apple orchards: In Hungarian]. Növényvédelem 23 (7), 306–310.
Bálint, J., Neacşu, P., Balog, A., Fail, J., Vétek, G., 2010. First record of the black locust gall midge Obolodiplosis robiniae (Haldeman) (Diptera: Cecidomyiidae) in Romania. North-Western Journal of Zoology. 6 (2), 319–322.
Ciuvăț, A.L., Abrudan, I.V., Ciuvăț, C.G., Marcu, C., Lorenț, A., Dincă, L., Bartha, S., 2022. Black locust (Robinia pseudoacacia L.) in Romanian forestry. Diversity 14 (10), 780. https://doi.org/10.3390/d14100780
Csóka, G., 2006. Az akác-gubacsszúnyog (Obolodiplosis robiniae (Haldeman 1847)) megjelenése Magyarországon. [The first occurrence of the gall midge Obolodiplosis robiniae (Haldeman, 1847) in Hungary: In Hungarian]. Növényvédelem 42: 663–664.
Csóka, G., Stone, G.N., Melika, G., 2017. Non-native gall-inducing insects on forest trees: a global review. Biological Invasions 19, 3161–3181. https://doi.org/10.1007/s10530-017-1466-5
Ermolaev, I.V., Yefremova, Z.A., Abdulkhakova, A.A., 2023. The First Finding of Macrosaccus robiniella (Clemens, 1859) and Obolodiplosis robinae Haldeman, 1847 near Voronezh. Russian Journal of Biological Invasions 14 (4), 528–532. https://doi.org/10.1134/S2075111723040069
Gombos, B., Nagy, Z., Hajdu, A., Nagy, J., 2023. Climate change in the Debrecen area in the last 50 years and its impact on maize production. Időjárás 127 (4), 485–504. https://doi.org/10.28974/idojaras.2023.4.5
Hungarian Meteorological Service (HMS), 2024. https://odp.met.hu/climate /homogenized_data/station_data_series/from_1901/ (accessed on 17/06/2024)
Kehr, R., Butin, H., 1996. Leaf diseases of black locust. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 48 (10), 197–200.
Keresztesi, B., 1988. The Black Locust. Akadémia Kiadó, Budapest.
Koltay, A., 2009. EVH II szint, intenzív monitoring [Intensive Forest Condition Monitoring: In Hungarian], in: Kolozs L. (Ed.), Erdővédelmi Mérő- és Megfigyelő Rendszer 1988-2008 [Forest Protection Measuring and Monitoring System 1988-2008: In Hungarian]. MGSZH, Központi Erdészeti Igazgatóság, Budapest, 14.
Li, G., Zhang, X., Huang, J., Wen, Z., Du, S., 2018. Afforestation and climatic niche dynamics of black locust (Robinia pseudoacacia). Forest Ecology and Management 407, 184–190. https://doi.org/10.1016/j.foreco.2017.10.019
Mantovani, D., Veste, M., Freese, D., 2014. Black locust (Robinia pseudoacacia L.) ecophysiological and morphological adaptations to drought and their consequence on biomass production and water-use efficiency. New Zealand Journal of Forestry Science 44 (1), 1–11. https://doi.org/10.1186/s40490-014-0029-0
Martin, A.J.F., 2023. Factors influencing the use of introduced black locust (Robinia pseudoacacia) for slope stabilization in post-war South Korea. Trees, Forests and People 14, 100444. https://doi.org/10.1016/j.tfp.2023.100444
Maselli, F., 2004. Monitoring forest conditions in a protected Mediterranean coastal area by the analysis of multiyear NDVI data. Remote sensing of environment 89 (4), 423–433.
Medzihorský, V., Trombik, J., Mally, R., Turčáni, M., Liebhold, A.M., 2023. Insect invasions track a tree invasion: Global distribution of black locust herbivores. Journal of Biogeography 50 (7), 1285–1298. https://doi.org/10.1111/jbi.14625
Michalopoulos-Skarmoutsos, H., Skarmoutsos, G., 1999. Pathogenicity of fungi affecting black locust (Robinia pseudoacacia) in Greece. Phytoparasitica 27, 239–240. https://doi.org/10.1007/BF02981464
Nemzeti Földügyi Központ (NFK) [Hungarian National Land Centre (NLC)], 2023. Erdeink egészségi állapota 2023-ban – jelentés a 16×16 km EVH hálózat alapján [Health condition of Hungarian Forests in 2023. – Report based on the 16×16 km forest protection network: In Hungarian] https://www.nfk.gov.hu/EMMRE_kiadvanyok__jelentesek__prognozis_fuzetek_news_536
Nicolescu, V.N., Rédei, K., Mason, W.L., Vor, T., Pöetzelsberger, E., Bastien, J.-C., Brus, R., Benčať, T., Đodan, M., Cvjetkovic, B., Andrašev, S., La Porta, N., Lavnyy, V., Mandžukovski, D., Petkova, K., Roženbergar, D., Wąsik, R., Mohren, G.M.J., Monteverdi, M.C., Musch, B., Klisz, M., Perić, S., Keça, L., Bartlett, D., Hernea, C., Pástor, M., 2020. Ecology, growth, and management of black locust (Robinia pseudoacacia L.), a non‑native species integrated into European forests. Journal of Forestry Research 31, 1081–1101. https://doi.org/10.1007/s11676-020-01116-8
Spyroglou, G., Fotelli, M., Nanos, N., Radoglou, K., 2021. Assessing black locust biomass accumulation in restoration plantations. Forests 12 (11), 1477. https://doi.org/10.3390/f12111477
Skuhravá, M., Skuhravý, V., Csóka, G., 2007. The invasive spread of the gall midge Obolodiplosis robiniae in Europe. Cecidology 22(2), 84–90.
Szabóky, C., Csóka, G., 1997. A Phyllonorycter robiniella Clemens, 1859 akáclevél aknázómoly megtelepedése Magyarországon [The establishment of Phyllonorycter robiniella Clemens 1859 in Hungary: In Hungarian]. Növényvédelem 33 (11): 569–571.
Tóth, B. (2006): Nemesnyár-fajták ismertetője – Irányelvek a nemesnyár-fajták kiválasztásához. [Description of hybrid poplar varieties – Guidelines for the selection of poplar varieties: In Hungarian]. Agroinform Kiadó és Nyomda Kft., Budapest.
Tóth, J. (2002): Az akác növényvédelme [Plant protection of black locust: In Hungarian]. Agroinform Kiadó, Budapest.
Trimble, 2024. https://ww2.agriculture.trimble.com/product/greenseeker-handheld-crop-sensor/ (accessed on 17/06/2024)
Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment 8 (2), 127–150. https://doi.org/10.1016/0034-4257(79)90013-0
Vajna, L., 2002. Diaporthe oncostoma causing stem canker of black locust in Hungary. Plant Pathology 51 (3), 393. https://doi.org/10.1046/j.1365-3059.2002.00706.x
Wilkaniec, A., Borowiak-Sobkowiak, B., Irzykowska, L., Breś, W., Świerk, D., Pardela, L., Durak, R., Środulska-Wielgus, J., Wielgus, K., 2021. Biotic and abiotic factors causing the collapse of Robinia pseudoacacia L. veteran trees in urban environments. PLoS One 16 (1), e0245398. https://doi.org/10.1371/journal.pone.0245398
Xiao, Q., McPherson, E.G., 2005. Tree health mapping with multispectral remote sensing data at UC Davis, California. Urban Ecosystems 8, 349–361. https://doi.org/10.1007/s11252-005-4867-7
Zhang, X., Nie, P., Hu, X., Feng, J., 2024. A Host Tree and Its Specialist Insects: Black Locust (Robinia pseudoacacia) availability largely determines the future range dynamics of its specialist insects in Europe. Insects 15 (10), 765. https://doi.org/10.3390/insects15100765

Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.